A new model of anterior subcapsular cataract: involvement of TGFbeta/Smad signaling.
نویسندگان
چکیده
PURPOSE To develop a new animal model of anterior subcapsular cataract formation by topical application of alkali to the eye and to examine the role of Transforming growth factorbeta/Smad3 (TGFbeta/Smad3) signaling in the formation of this cataract model. METHODS Under anesthesia, one eye of adult Wistar rats (n=142) was subjected to alkali burn by topical application of 1 N NaOH. The eye was then histologically examined at specific time intervals. Immunohistochemistry with a battery of antibodies was carried out to examine the epithelial-mesenchymal transition (EMT) in lens epithelium. Enzyme immunoassay was employed to determine the level of growth factors in aqueous humor and lens tissue. Smad3-null mice were also used to examine the role of Smad3 signaling in cataractogenesis in this model. RESULTS Two days post-burn of the ocular surface, lens epithelium underwent EMT as evidenced by the upregulation of Snail and alpha-smooth muscle actin and formed a multilayer of cells beneath the capsule. Smad signaling was found to be activated in EMT-type lens cells. The majority of myofibroblast-type lens cells expressed proliferative cell nuclear antigen (PCNA). The total amount of active TGFbeta2, total TGFbeta2, and Fibroblast growth factor 2 (FGF2) increased in the aqueous humor and lens. Loss of Smad3 attenuated, but did not completely abolish, EMT in the lens epithelium. CONCLUSIONS Topical alkali treatment of the ocular surface readily induces an EMT-type anterior subcapsular cataract. Smad3 signaling is involved, but not required, for achievement of EMT in the lens epithelium in this cataract model.
منابع مشابه
ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFβ/Smad and Jagged/Notch signaling pathways in lens epithelial cells.
Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is the major pathological mechanism in anterior subcapsular cataract (ASC) and posterior capsule opacification (PCO), which are important causes of visual impairment. Extracellular signal-regulated kinase (ERK)1/2 pathway has been reported to play a major role in carcinogenesis, cancer metastasis and various fibrotic diseas...
متن کاملAdenoviral gene transfer of bioactive TGFβ1 to the rodent eye as a novel model for anterior subcapsular cataract
PURPOSE To produce a gene-transfer model of rodent anterior subcapsular cataracts (ASC) using a replication-deficient, adenoviral vector containing active TGFbeta1. Establishment of this model will be important for further investigations of TGFbeta-induced signaling cascades in ASC. METHODS Adenovirus containing the transgene for active TGFbeta1 (AdTGFbeta1), beta-galactosidase (AdLacZ), gree...
متن کاملTGFbeta-Smad signalling in postoperative human lens epithelial cells.
AIMS To localise Smads3/4 proteins in lens epithelial cells (LECs) of fresh and postoperative human specimens. Smads3/4 are involved in signal transduction between transforming growth factor beta (TGFbeta) cell surface receptors and gene promoters. Nuclear localisation of Smads indicates achievement of endogenous TGFbeta signalling in cells. METHODS Three circular sections of the anterior cap...
متن کاملQuantitative analysis of injury-induced anterior subcapsular cataract in the mouse: a model of lens epithelial cells proliferation and epithelial-mesenchymal transition
The mouse lens capsular injury model has been widely used in investigating the mechanisms of anterior subcapsular cataract (ASC) and posterior capsule opacification (PCO), and evaluating the efficacy of antifibrotic compounds. Nevertheless, there is no available protocol to quantitatively assess the treatment outcomes. Our aim is to describe a new method that can successfully quantify the wound...
متن کاملMolecular mechanisms of TGF beta receptor-triggered signaling cascades rapidly induced by the calcineurin inhibitors cyclosporin A and FK506.
The calcineurin inhibitor (CNI)-induced renal fibrosis is attributed to an exaggerated deposition of extracellular matrix, which is mainly due to an increased expression of TGFbeta. Herein we demonstrate that the CNI cyclosporin A and tacrolimus (FK506), independent of TGFbeta synthesis, rapidly activate TGFbeta/Smad signaling in cultured mesangial cells and in whole kidney samples from CNI-tre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular vision
دوره 12 شماره
صفحات -
تاریخ انتشار 2006